

HDI+, HDI-L+, AND HDI DROP IN ANCHORS

PRODUCT DESCRIPTION

HDI+, HDI-L+, and HDI Drop-in anchors

Anchor System		Features and Benefits				
		Anchor, setting tool and Hilti drill bit form a matched tolerance system to provide reliable fastenings				
	HDI-L+ and HDI+	Allows shallow embedment without sacrificing performance				
	with Auto setting tools 1/4" to 1/2"	Lip allows accurate flush surface setting, independent of hole depth for the HDI-L+				
		Ideal for repetitive fastenings with threaded rods of equal length				
		HDI+ and HDI-L+ have an innovative stepped plug that reduces number of hammer blows by up to 50%				
	HDI and Manual setting tool 5/8" to 3/4"	HDI+ and HDI-L+ can be installed with the new HDI+ Setting Tool system (stop drill bit and machine setting tool) for improved productivity				
	HDI SS303 1/4" to 3/4" HDI-S 1/2" and 3/4"	HDI-S speed thread designed to accept coil rods and forms a matched tolerance system for forming applications.				

Uncracked concrete

Fire sprinkler listings

Approvals/Listings							
FM (Factory Mutual)	Pipe hanger components for automatic sprinkler systems HDI+ 3/8, HDI-L+ 3/8, HDI+1/2, HDI-L+ 1/2, HDI 5/8 and HDI 3/4						
UL and cUL (Underwriters Laboratory)	Pipe hanger equipment for fire protection services HDI+ 3/8, HDI-L+ 3/8,						
	HDI+1/2, HDI-L+ 1/2, HDI 5/8 and HDI 3/4						

INSTALLATION PARAMETERS

Table 1 - Hilti HDI+, HDI-L+HDI, HDI-SS303 and HDI-S specifications

Setting Information	Symbol	Units		, HDI-L+ DI-SS30			and SS303	НС	I-S
			1/4	3/8	1/2	5/8	3/4	1/2	3/4
Insert thread	d	UNC	1/4-20	3/8-16	1/2-13	5/8-11	3/4-10	1/2-6	3/4-4.5
Nominal bit diameter	d _{bit}	in.	3/8	1/2	5/8	27/32	1	5/8	1
Nominal embedment Anchor length Hole depth	h _{nom} ℓ h _o	in. (mm)	1 (25)	1-9/16 (40)	2 (51)	2-9/16 (65)	3-3/16 (81)	2 (51)	3-3/16 (81)
Useable thread length	ℓ_{th}	in. (mm)	7/16 (11)	5/8 (15)	11/16 (17)	7/8 (22)	1-3/8 (34)	11/16 (17)	1-3/8 (34)
Installation torque	T _{inst}	ft-lb (Nm)	4 (5)	11 (15)	22 (30)	37 (50)	80 (109)	22 (30)	80 (109)
Minimum slab thickness	h	in. (mm)	3 (76)	3-1/8 (79)	4 (102)	5-1/8 (130)	6-3/8 (162)	4 (102)	6-3/8 (162)

MATERIAL SPECIFICATIONS

HDI+, HDI-L, HDI and HDI-S anchors are manufactured from mild carbon steel. Anchor bodies are zinc plated in accordance with ASTM B633, AC 1, Type III

HDI SS303 anchors are manufactured from AISI Type 303 stainless steel

DESIGN DATA IN CONCRETE USING ALLOWABLE STRESS DESIGN

Table 2 — Hilti HDI+, HDI-L+ and HDI carbon steel allowable loads in concrete 1,2

,	Nominal	f' _c = 2,000				f'_c = .	4,000		f' _c = 6,000				
Anchor type	anchor diameter in.	Tension	, lb (kN)	Shear,	lb (kN)	Tension	, lb (kN)	Shear,	lb (kN)	Tension	, lb (kN)	Shear,	lb (kN)
	1/4	385	(1.7)	450	(2.0)	510	(2.3)	625	(2.8)	640	(2.8)	700	(3.1)
HDI+	3/8	635	(2.8)	965	(4.3)	920	(4.1)	1,250	(5.6)	1,260	(5.6)	1,500	(6.7)
	1/2	945	(4.2)	1,500	(6.7)	1,605	(7.1)	2,125	(9.5)	1,950	(8.7)	2,500	(11.1)
HDI	5/8	1,875	(8.3)	2,500	(11.1)	2,920	(13.0)	3,250	(14.5)	3,715	(16.5)	3,750	(16.7)
וטח	3/4	2,500	(11.1)	3,875	(17.2)	4,065	(18.1)	5,000	(22.2)	5,565	(24.8)	5,500	(24.5)

Table 3 — Hilti HDI+, HDI-L+ and HDI carbon steel ultimate loads in concrete¹

	Nominal	f' _c = 2,000					f'_c =	4,000		f' _c = 6,000			
Anchor type	anchor diameter in.	Tension	, lb (kN)	Shear,	lb (kN)	Tension	, lb (kN)	Shear,	lb (kN)	Tension	, lb (kN)	Shear,	lb (kN)
	1/4	1,535	(6.8)	1,800	(8.0)	2,040	(9.1)	2,500	(11.1)	2,555	(11.4)	2,800	(12.5)
HDI+	3/8	2,540	(11.3)	3,850	(17.1)	3,685	(16.4)	5,000	(22.2)	5,035	(22.4)	6,000	(26.7)
	1/2	3,780	(16.8)	6,000	(26.7)	6,425	(28.6)	8,500	(37.8)	7,810	(34.7)	10,000	(44.5)
HDI	5/8	7,500	(33.4)	10,000	(44.5)	11,685	(52.0)	13,000	(57.8)	14,865	(66.1)	15,000	(66.7)
	3/4	10,000	(44.5)	15,500	(68.9)	16,260	(72.3)	20,000	(89.0)	22,250	(99.0)	22,000	(97.9)

¹ The shear tests were conducted with SAE Grade 5 bolts with minimum yield strength of 85 ksi and minimum tension strength of 120 ksi. Shear testing for the 1/4-in. models were conducted with SAE Grade 8 bolts with minimum yield strength of 120 ksi and minimum tension strength of 150 ksi in 6,000 psi concrete. High-strength bolts were used to force concrete failure modes. When using steel bolts with a lower tensile strength, steel failure must be considered.

Table 4 — Hilti HDI+, HDI-L+ and HDI carbon steel allowable loads in lightweight concrete and lightweight concrete poured over metal deck^{1,2,3,4}

	Nominal						3,000 psi lightweight concrete over metal deck								
Anchor	anchor diameter	3,000 psi lightweight concrete				Uppe	r flute		Lower flute						
type	in.	Tension	, lb (kN)	Shear,	lb (kN)	Tension	, lb (kN)	Shear,	lb (kN)	Tension	, lb (kN)	Shear,	lb (kN)		
	1/4	465	(2.1)	340	(1.5)	530	(2.4)	335	(1.5)	375	(1.7)	250	(1.1)		
HDI+	3/8	720	(3.2)	940	(4.2)	810	(3.6)	1,010	(4.5)	500	(2.2)	500	(2.2)		
	1/2	1,035	(4.6)	1,700	(7.6)	1,035	(4.6)	1,755	(7.8)	625	(2.8)	750	(3.3)		
HDI	5/8	1,465	(6.5)	2,835	(12.6)	1,035	(4.6)	1,755	(7.8)	875	(3.9)	875	(3.9)		
וטח	3/4	2.075	(9.2)	3.680	(16.4)	1.250	(5.6)	1.755	(7.8)	1.250	(5.6)	1.000	(4.4)		

¹ The shear tests were conducted with SAE Grade 5 bolts with minimum yield strength of 85 ksi and minimum tension strength of 120 ksi. Shear testing for the 1/4-in. models were conducted with SAE Grade 8 bolts with minimum yield strength of 120 ksi and minimum tension strength of 150 ksi in 6,000 psi concrete. High-strength bolts were used to force concrete failure modes. When using steel bolts with a lower tensile strength, steel failure must be considered.

Table 5 — Hilti HDI stainless steel allowable loads in concrete 1,2

Nominal anchor		f'c =	4,000		f' _c = 6,000				
diameter in.	Tension	, lb (kN)	Shear,	lb (kN)	Tension	, lb (kN)	Shear, lb (kN)		
1/4	480	(2.1)	600	(2.7)	740	(3.3)	600	(2.7)	
3/8	1,040	(4.6)	1,230	(5.5)	1,460	(6.5)	1,230	(5.5)	
1/2	1,840	(8.2)	2,760	(12.3)	2,410	(10.7)	2,760	(12.3)	
5/8	2,630	(11.7)	4,510	(20.1)	3,770	(16.8)	4,510	(20.1)	
3/4	3,830	(17.0)	5,580	(24.8)	5,030	(22.4)	5,580	(24.8)	

¹ Shear testing conducted with 18-8 stainless steel bolts.

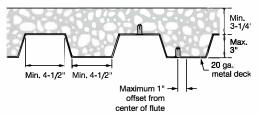

2 Allowable loads calculated with a factor of safety of 4.

Table 6 — Hilti HDI-S speed thread allowable loads in concrete¹

Nominal anchor		f' c =	4,000		f' _c = 6,000				
diameter in.	Tension	, lb (kN)	Shear,	lb (kN)	Tension	, lb (kN)	Shear, lb (kN)		
1/2	1,785	(7.9)	1,570	(7.0)	2,345	(10.4)	1,570	(7.0)	
3/4	4,065	(18.1)	3,700	(16.5)	5,565	(24.8)	3,700	(16.5)	

¹ Allowable loads calculated with a factor of safety of 4.

Figure 1 — Installation of Hilti HDI+ and HDI drop-in anchor in the soffit of concrete over metal deck floor and roof assemblies W – deck

Combined shear and tension loading

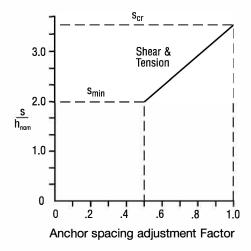
$$\left(\frac{N_d}{N_{rec}}\right)^{5/3} + \left(\frac{V_d}{V_{rec}}\right)^{5/3} \le 1.0$$

² Allowable loads calculated with a factor of safety of 4.

² Minimum compressive strength of structural lightweight concrete is 3,000 psi.

³ See figure 1 for typical details.

⁴ Allowable loads calculated with a factor of safety of 4.

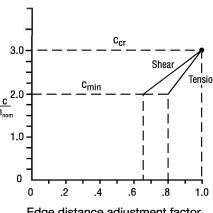

Anchor spacing and edge distance guidelines

Anchor spacing adjustment factors

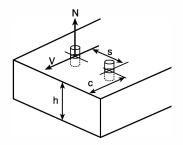
Actual Spacing

$$s_{min} = 2.0 h_{nom}$$

$$s_{cr} = 3.5 h_{nom}$$



Edge distance adjustment factors


= Actual edge distance

$$c_{min} = 2.0 h_{nom}$$

$$c_{cr} = 3.0 h_{nom}$$

Edge distance adjustment factor

Influence of anchor spacing and edge distance $f_{\rm A}$ and $f_{\rm R}$

Ancho	or Size	h _n	om
in.	(mm)	in.	(mm)
1/4	(6.4)	1	(25)
3/8	(9.5)	1-9/16	(40)
1/2	(12.7)	2	(51)
5/8	(15.8)	2-9/16	(65)
3/4	(19.1)	3-3/16	(81)

 h_{nom} = nominal embedment depth

Table 7 — Load adjustment factors for Hilti HDI drop-in anchors in concrete

Load	l adjustr	nent fa	ctors fo	r ancho	r spacir	ng $f_{_{\rm A}}$			L	oad adj	ustmen	t factors	s for ed	ge dista	ince $f_{\rm R}$			
Ī		Tensio	n/shear	r loads					Ter	nsion $f_{_{ m R}}$	N			1	5	Shear f_i	RV	
Spac	ing s		Ancl	hor dian	neter		Edge di	stance c	Anchor diameter				Anchor diameter					
in.	(mm)	1/4	3/8	1/2	5/8	3/4	in.	(mm)	1/4	3/8	1/2	5/8	3/4	1/4	3/8	1/2	5/8	3/4
2	(51)	.50					2	(51)	.80					.65				
2-1/2	(64)	.67					2-1/2	(64)	.90					.83				
3	(76)	.83	.50				3	(76)	1.0	.80				1.0	.65			
3-1/2	(89)	1.0	.58		ļ.		3-1/2	(89)		.85					.73			
4	(102)		.69	.50			4	(102)		.91	.80				.85	.65		
4-1/2 5	(114)		.79	.58			4-1/2	(114)		.98	.85				.96	.74		
	(127)		.90	.67	.50		5	(127)		1.0	.90	.80			1.0	.83	.65	
5-1/2	(140)		1.0	.75	.55		5-1/2	(140)			.95	.83				.91	.70	
6	(152)			.83	.61	.50	6	(152)			1.0	.87				1.0	.77	
7	(178)			1.0	.74	.57	6-1/2	(165)				.91	.80				.84	.65
8	(203)				.87	.67	7	(178)				.95	.84				.91	.72
9	(229)				1.0	.77	8	(203)				1.0	.90				1.0	.83
10	(254)					.88	9	(229)					.96					.94
11	(279)					.98	10	(254)					1.0					1.0
12	(305)					1.0												
			s -		nom					c _{cr} = 0.					= 2.0 h = 0.35			h _{nom}
			for s _{cr}	> s > s _m	in						> c > c _{mir}	1				rc _{cr} >c		

INSTALLATION INSTRUCTIONS

Manufacturer's Printed Installation Instructions (MPII) are included with each product package. They can also be viewed or downloaded at www.hilti.com. Because of the possibility of changes, always verify that downloaded MPII are current when used. Proper installation is critical to achieve full performance. Training is available on request. Contact Hilti Technical Services for applications and conditions not addressed in the MPII.

ORDERING INFORMATION¹

HDI+, HDI-L+ and HDI

Carbon steel

Description	Description	Description	Anchor thread size	Qty / box
HDI+ 1/4	HDI-L+ 1/4	8	1/4	100
HDI+ 3/8	HDI-L+ 3/8	5.	3/8	50
HDI+ 1/2	HDI-L+ 1/2	HDI-S 1/2"	1/2	50
HDI 5/8		÷	5/8	25
HDI 3/4	<u> </u>	HDI-S 3/4"	3/4	25

HDI-SS303 anchors

Stainless steel

Description	Anchor thread size	Qty / box
HDI 1/4 SS303	1/4	100
HDI 3/8 SS303	3/8	50
HDI 1/2 SS303	1/2	50
HDI 5/8 SS303	5/8	25
HDI 3/4 SS303	3/4	25

Setting Tools for HDI+ and HDI-L+

Anchor thread size	Description
1/4	HST 1/4 Setting tool
	HSD-MM 1/4 (TE-C-24D6 1/4 Setting tool)
	HDI+ Setting Tool includes a TE-CX 3/8x1 carbide bit
3/8	HST 3/8 Setting tool
	HSD-MM 3/8 (TE-C-24SD10 3/8 Setting tool)
	HDI+ Setting Tool includes a TE-CX 1/2x1-9/16 carbide bit
1/2	HST 1/2 Setting tool
	HSD-MM 1/2 (TE-C-24SD12 1/2 Setting tool)
	HDI+ Setting Tool includes a TE-CX 5/8x2 carbide bit

Setting tools for HDI and HDI-SS303 anchors

Description	Sets anchor size	Qty
HST 1/4" Hand Setting Tool	1/4" HDI SS303	1
HST 3/8" Hand Setting Tool	3/8" HDI SS303	1
HST 1/2" Hand Setting Tool	1/2" HDI SS303 / HDI-S	1
HST 5/8" Hand Setting Tool	5/8" HDI / HDI SS303	i
HST 3/4" Hand Setting Tool	3/4" HDI / HDI SS303 / HDI-S	1

